
Full Name
Job Title, Company Name

The evolution of access control
Relatore
Anders Eknert, Styra #OSW2021



The evolution of access control
Identity and authorization in distributed systems

Anders Eknert



Anders Eknert

● Developer Advocate at 

● Software development

● Background in identity systems

● Three years into OPA

● Cooking and food

● Football

anderseknert

anderseknert

anderseknert



From monolith

Authentication Authorization

Data Access

Business logic

Orchestration

Data AccessData Access

Business logic Business logic

User interface



To microservices

Authentication Authorization

Data Access

Business logic

Orchestration

Data AccessData Access

Business logic Business logic

User interface



To microservices

Authentication Authorization

Data Access

Business logic

Orchestration

Data AccessData Access

Business logic Business logic

User interface



The evolution of identity

Application

Data

Permissions

Users

credentials

The monolith model
● The application handles everything - including authentication and access control

● The user authenticates in the application, a session is established

● Access control performed in code, commonly with a database serving permission data



The evolution of identity

Application

Data

Permissions

The distributed model
● Authentication is commonly delegated elsewhere

● But up until now, the model for access control has largely remained the same

● Authorization still lives embedded in code

● Permissions retrieved from external data sources

● This model scales poorly, and is difficult to manage

token



The evolution of identity

Service

Users Permissions

Service Service Service Service

Data

Service

DataData

credentials

credentials

credentials credentials credentials credentials

Naive monolith architecture using microservices

● All services need to verify the user identity

● All services need to check for permissions

● This doesn’t scale



The evolution of identity

Service

Users Permissions

Service Service Service Service

Data

Service

DataData

credentials

credentials

credentials credentials credentials credentials

Problems

● Credentials are passed around between services

● Services need to do lookups to verify user credentials



The evolution of identity

Service

Permissions

Service Service Service Service

Data

Service

DataData

token

token

token token token token

Solution

● Delegate authentication to external system

● Tokens passed around between services rather than user credentials

Users

Identity 
system

tokencredentials



The evolution of identity

Service

Permissions

Service Service Service Service

Data

Service

DataData

token

token

token token token token

Solution

● OAuth2 provides flows for token issuance

● OpenID Connect provides identity layer on top

Users

Identity 
System

tokencredentials



The evolution of identity

Service

Permissions

Service Service Service Service

Data

Service

DataData

JWT

JWT

JWT JWT JWT JWT

Solution

● OAuth2 doesn’t specify what a token should look like

● Opaque tokens still require lookups

● JSON Web Tokens (JWTs) allow us to carry identity in tokens

Users

Identity 
System

tokencredentials

JSON Web Tokens



The evolution of identity

Service

Permissions

Service Service Service Service

Data

Service

DataData

JWT

JWT

JWT JWT JWT JWT

Identity problem solved

● We now have a secure, scalable model for transferring identity

● Eliminated lookups to user store

Users

Identity 
System

tokencredentials

JSON Web Tokens



The evolution of identity

Service

Permissions

Service Service Service Service

Data

Service

DataData

JWT

JWT

JWT JWT JWT JWT

However...

● Each service still needs to check for permissions

● Authorization becomes a bottleneck

● No common way of doing authorization across languages and frameworks

Users

Identity 
System

tokencredentials

JSON Web Tokens



Distributed Authorization Model

What we want

● In order to minimize latency, authorization decisions should be made as close to the application as possible

● Avoid calling external permission database in each service - expensive and risks creating a bottleneck

● Decouple authorization code from application and business logic

○ Modern microservice architectures are heterogeneous - many languages and frameworks

○ Updates to authorization policies should be deployable independently of application lifecycle

○ Should be possible to share authorization policies across teams and services



Open Policy Agent



Open Policy Agent

● Open source general purpose policy engine

● Decouples policy from application / business logic

● Decouples policy decisions from actual enforcement

● Unified way of dealing with policies across the stack

● Policies written in declarative Rego language

● Use cases ranging from microservice authorization, kubernetes admission 

control, data source filtering, to CI/CD pipeline policies and much more



Vibrant Community

● 200+ Contributors

● 50+ Integrations

● 5800+ GitHub stars

● 5000+ Slack users

● 100+ million Docker image pulls

● Ecosystem including Conftest, 

Gatekeeper, VS Code and IntelliJ 

IDEA editor plugins.



Production Users



Open Policy Agent



Open Policy Agent

So, how does it work?



Policy Decision Model

Service

OPA

Policy (Rego) Data
(JSON)

Request

Policy
Decision

Policy
Query

Input can be ANY JSON value Output can be ANY JSON value

Linux PAM



Distributed Authorization With OPA

Service Service Service Service Service

DataDataData

JWT JWT JWT JWT JWT

Deployment Model

● OPA deployed next to each service (sidecar)

● Authorization decisions decoupled from application logic

● Services communicate with OPA’s REST API, Go library, Envoy/Istio, Wasm

Users

Identity 
System

tokencredentials

JSON Web Tokens

Policy 
(Rego)

Data
(JSON)

Policy
Decision

Policy
Query

Policy
Decision

Policy
Query

Policy
Decision

Policy
Query

Policy
Decision

Policy
Query

Policy
Decision

Policy
Query

Policy 
(Rego)

Data
(JSON)

Policy 
(Rego)

Data
(JSON)

Policy 
(Rego)

Data
(JSON)

Policy 
(Rego)

Data
(JSON)



● Declarative high-level policy language used by OPA

● Policy consists of any number of rules

● Rules commonly return true/false but may return any

type available in JSON, like strings, lists and objects

● 150+ built-in functions to help with policy authoring

● Policy testing made easy with provided unit test framework

● Well documented

● Rego Playground - try it out!

Rego

https://play.openpolicyagent.org/


Rego



Rego



Rego



Rego



Rego



Rego



Rego



Rego



Rego



Distributed Authorization With OPA

Service Service Service Service Service

DataDataData

JWT JWT JWT JWT JWT

Data

● In addition to policy, OPA commonly needs data to make decisions

● This could be roles, users, resources - any data needed for policy decisions

● Data provided asynchronously rather than at the time of the request

Users

Identity 
System

tokencredentials

JSON Web Tokens

Policy 
(Rego)

Data
(JSON)

Policy
Decision

Policy
Query

Policy
Decision

Policy
Query

Policy
Decision

Policy
Query

Policy
Decision

Policy
Query

Policy
Decision

Policy
Query

Policy 
(Rego)

Data
(JSON)

Policy 
(Rego)

Data
(JSON)

Policy 
(Rego)

Data
(JSON)

Policy 
(Rego)

Data
(JSON)

Permissions



1. Start small – write a few simple policies and tests

2. Browse the OPA documentation. Get a feel for the basics and the built-ins

3. Consider possible applications near to you - previous apps and libraries 

you’ve worked with. Consider the informal policies it dealt with

4. Delegate policy responsibilities to OPA. Again, start small! Perhaps a 

single endpoint to begin somewhere. Deploy and build experience

5. Scale up - management capabilities, logging, bundle server

6. Styra Academy

7. Join the OPA Slack community

Getting Started with OPA

https://academy.styra.com/
https://slack.openpolicyagent.org/


#OSW2021
http://www.reteitalianaopensource.net

Thank you!


