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Anders Eknert

● Developer Advocate at 

● Software development

● Background in identity systems

● Three years into OPA

● Cooking and food

● Football
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The evolution of identity

Application

Data
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The monolith model
● The application handles everything - including authentication and access control

● The user authenticates in the application, a session is established

● Access control performed in code, commonly with a database serving permission data



The evolution of identity

Application
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The distributed model
● Authentication is commonly delegated elsewhere

● But up until now, the model for access control has largely remained the same

● Authorization still lives embedded in code

● Permissions retrieved from external data sources

● This model scales poorly, and is difficult to manage

token



The evolution of identity
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Naive monolith architecture using microservices

● All services need to verify the user identity

● All services need to check for permissions

● This doesn’t scale
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Problems

● Credentials are passed around between services

● Services need to do lookups to verify user credentials
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Solution

● Delegate authentication to external system

● Tokens passed around between services rather than user credentials
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Solution

● OAuth2 provides flows for token issuance

● OpenID Connect provides identity layer on top
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Solution

● OAuth2 doesn’t specify what a token should look like

● Opaque tokens still require lookups

● JSON Web Tokens (JWTs) allow us to carry identity in tokens
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The evolution of identity
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Identity problem solved

● We now have a secure, scalable model for transferring identity

● Eliminated lookups to user store
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The evolution of identity
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However...

● Each service still needs to check for permissions

● Authorization becomes a bottleneck

● No common way of doing authorization across languages and frameworks
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Distributed Authorization Model

What we want

● In order to minimize latency, authorization decisions should be made as close to the application as possible

● Avoid calling external permission database in each service - expensive and risks creating a bottleneck

● Decouple authorization code from application and business logic

○ Modern microservice architectures are heterogeneous - many languages and frameworks

○ Updates to authorization policies should be deployable independently of application lifecycle

○ Should be possible to share authorization policies across teams and services
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Open Policy Agent

● Open source general purpose policy engine

● Decouples policy from application / business logic

● Decouples policy decisions from actual enforcement

● Unified way of dealing with policies across the stack

● Policies written in declarative Rego language

● Use cases ranging from microservice authorization, kubernetes admission 

control, data source filtering, to CI/CD pipeline policies and much more



Vibrant Community

● 200+ Contributors

● 50+ Integrations

● 5800+ GitHub stars

● 5000+ Slack users

● 100+ million Docker image pulls

● Ecosystem including Conftest, 

Gatekeeper, VS Code and IntelliJ 

IDEA editor plugins.
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Open Policy Agent

So, how does it work?



Policy Decision Model
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Input can be ANY JSON value Output can be ANY JSON value

Linux PAM



Distributed Authorization With OPA
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Deployment Model

● OPA deployed next to each service (sidecar)

● Authorization decisions decoupled from application logic

● Services communicate with OPA’s REST API, Go library, Envoy/Istio, Wasm
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● Declarative high-level policy language used by OPA

● Policy consists of any number of rules

● Rules commonly return true/false but may return any

type available in JSON, like strings, lists and objects

● 150+ built-in functions to help with policy authoring

● Policy testing made easy with provided unit test framework

● Well documented

● Rego Playground - try it out!

Rego

https://play.openpolicyagent.org/
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Distributed Authorization With OPA
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Data

● In addition to policy, OPA commonly needs data to make decisions

● This could be roles, users, resources - any data needed for policy decisions

● Data provided asynchronously rather than at the time of the request
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1. Start small – write a few simple policies and tests

2. Browse the OPA documentation. Get a feel for the basics and the built-ins

3. Consider possible applications near to you - previous apps and libraries 

you’ve worked with. Consider the informal policies it dealt with

4. Delegate policy responsibilities to OPA. Again, start small! Perhaps a 

single endpoint to begin somewhere. Deploy and build experience

5. Scale up - management capabilities, logging, bundle server

6. Styra Academy

7. Join the OPA Slack community

Getting Started with OPA

https://academy.styra.com/
https://slack.openpolicyagent.org/
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Thank you!


